Riemannian Manifolds with Positive Sectional Curvature

نویسنده

  • WOLFGANG ZILLER
چکیده

It is fair to say that Riemannian geometry started with Gauss’s famous ”Disquisitiones generales” from 1827 in which one finds a rigorous discussion of what we now call the Gauss curvature of a surface. Much has been written about the importance and influence of this paper, see in particular the article [Do] by P.Dombrowski for a careful discussion of its contents and influence during that time. Here we only make a few comments. Curvature of surfaces in 3-space had been studied previously by a number of authors and was defined as the product of the principal curvatures. But Gauss was the first to make the surprising discovery that this curvature only depends on the intrinsic metric and not on the embedding. Here one finds for example the formula for the metric in the form ds = dr + f(r, θ)dθ. Gauss showed that every metric on a surface has this form in ”normal” coordinates and that it has curvature K = −frr/f . In fact one can take it as the definition of the Gauss curvature and proves Gauss’s famous ”Theorema Egregium” that the curvature is an intrinsic invariant and does not depend on the embedding in R. He also proved a local version of what we nowadays call the Gauss-Bonnet theorem (it is not clear what Bonnet’s contribution was to this result), which states that in a geodesic triangle ∆ with angles α, β, γ the Gauss curvature measures the angle ”defect”: ∫

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Counterexamples to Continuity of Optimal Transportation on Positively Curved Riemannian Manifolds

Counterexamples to continuity of optimal transportation on Riemannian manifolds with everywhere positive sectional curvature are provided. These examples show that the condition A3w of Ma, Trudinger, & Wang is not guaranteed by positivity of sectional curvature.

متن کامل

Non-linear ergodic theorems in complete non-positive curvature metric spaces

Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

Examples of Riemannian manifolds with positive curvature almost everywhere

We show that the unit tangent bundle of S4 and a real cohomology CP 3 admit Riemannian metrics with positive sectional curvature almost everywhere. These are the only examples so far with positive curvature almost everywhere that are not also known to admit positive curvature. AMS Classi cation numbers Primary: 53C20 Secondary: 53C20, 58B20, 58G30

متن کامل

Harmonic Maps and the Topology of Manifolds with Positive Spectrum and Stable Minimal Hypersurfaces

Harmonic maps are natural generalizations of harmonic functions and are critical points of the energy functional defined on the space of maps between two Riemannian manifolds. The Liouville type properties for harmonic maps have been studied extensively in the past years (Cf. [Ch], [C], [EL1], [EL2], [ES], [H], [HJW], [J], [SY], [S], [Y1], etc.). In 1975, Yau [Y1] proved that any harmonic funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012